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The local environment of the geographical origin of plants shaped their genetic variations through environmental adaptation.
While the characteristics of the local environment correlate with the genotypes and other genomic features of the plants, they
can also be indicative of genotype-phenotype associations providing additional information relevant to environmental
dependence. In this study, we investigate how the geoclimatic features from the geographical origin of the Arabidopsis thaliana
accessions can be integrated with genomic features for phenotype prediction and association analysis using advanced canonical
correlation analysis (CCA). In particular, we propose a novel method called hierarchical canonical correlation analysis (HCCA)
to combine mutations, gene expressions, and DNA methylations with geoclimatic features for informative coprojections of the
features. HCCA uses a condition number of the cross-covariance between pairs of datasets to infer a hierarchical structure for
applying CCA to combine the data. In the experiments on Arabidopsis thaliana data from 1001 Genomes and 1001 Epigenomes
projects and climatic, atmospheric, and soil environmental variables combined by CLIMtools, HCCA provided a joint
representation of the genomic data and geoclimate data for better prediction of the special flowering time at 10°C (FT10) of
Arabidopsis thaliana. We also extended HCCA with information from a protein-protein interaction (PPI) network to guide the
feature learning by imposing network modules onto the genomic features, which are shown to be useful for identifying genes
with more coherent functions correlated with the geoclimatic features. The findings in this study suggest that environmental
data comprise an important component in plant phenotype analysis. HCCA is a useful data integration technique for phenotype
prediction, and a better understanding of the interactions between gene functions and environment as more useful functional
information is introduced by coprojections of multiple genomic datasets.

1. Introduction

With the new high-throughput genomic array and sequenc-
ing technologies, large-scale genomic datasets in Arabidopsis
thaliana have been greatly augmented or first become avail-
able in the last few years. The early large-scale genomic study
in [1] used a 250 k SNP chip with multiple markers in each
haplotype block to genotype a regional map (RegMap) of
1,307 accessions and conducted a global comparison of the
traits in genetically distinct groups. Later, [2] extended this
effort by applying whole-genome sequencing on 1,135 acces-
sions to extract a map of more than 10 million biallelic SNPs
and more than 1 million small-scale indels in the accessions.
The large-scale genome resources from the studies enabled
more comprehensive GWAS studies by the research commu-
nity. More recent studies [3, 4] reported DNAmethylomes of
a global set of 144 accessions and a focused regional set of 150

Swedish accessions. In particular, the 1001 Epigenomes pro-
ject [5] presented a larger comprehensive resource with 1,107
single-base resolution methylomes of 1,028 accessions and
1,203 transcriptomes of 998 accessions. Altogether, these
resources have enabled more studies leading to better under-
standings of how the variations contribute to the molecular
and nonmolecular phenotypes of Arabidopsis thaliana.

Large-scale efforts have also been made to catalog traits,
phenotypes, and other characteristics of the species. Plan-
teome [6] categorizes relations among traits (PTO), environ-
mental conditions (PECO), and units of measurement (UO)
in several ontologies. AraPheno [7] provides a repository of
288 phenotypes by the integration of the information and
data in 17 studies, involving more than 7,000 accessions.
The large amount of information in these resources has
revealed important phenotype variabilities across the acces-
sions. In a recent study in [8], a platform, CLIMtools, was
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developed to provide an integrative analysis of the correla-
tions among genotypes, phenotypes, and geoclimate vari-
ables from the geographical origin of the accessions.

While the recent advances in [5, 8] have analyzed the
genome and methylome variations for associations with phe-
notypes and geoclimate variables, these studies are limited to
standard single-variable GWAS and correlation analysis. In
this work, we integrate heterogeneous genomic data includ-
ing transcriptome, methylome, and genotypes, together with
the accessions’ geoclimate background information to cap-
ture the interactions among the four types of variables for
training models to predict phenotypes. To integrate the
multiple genomic datasets and geoclimate dataset, we pro-
pose a novel method, namely, hierarchical canonical corre-
lation analysis (HCCA), which integrates pairs of datasets
hierarchically using the concept of condition number of the
cross-covariance between a pair of datasets to determine the
hierarchy. In this study, HCCA learns the joint feature repre-
sentation between heterogeneous genomic data and geocli-
mate data to predict the special flowering time at 10°C
(FT10) with supervised learning. In addition, we incorporate
protein-protein interaction (PPI) Network with HCCA to
find a coprojected feature representation that not only relies
on the correlation among datasets but also retains the rela-
tionship among the proteins in the PPI to identify genes with
consistent functions associated with the geoclimatic variables
of interest.

The goal of this research is to study the role of geoclimatic
features in plant genotype-phenotype association analysis. In
particular, we investigated (1) whether the geoclimatic fea-
tures are predictive of the flowering time phenotype and (2)
whether the geoclimatic features are complimentary with
the genomic features to improve phenotype predictions and
(3) novel computational methods to integrate geoclimatic
and genomic features to discover their associations and pre-
dict phenotypes. The contributions and the discoveries in
this work are the following:

(i) We present a new approach (HCCA) to model the
correlation structure among multiple datasets for
an improved integrative analysis of genomic data
with geoclimate data

(ii) Our analysis confirms that geoclimatic features pro-
vide important information for the task of predicting
the phenotype and improve the prediction by inte-
gration with genomic features

(iii) The experiments tested several methods for copro-
jection of multiple datasets including hierarchical
CCA, tensor CCA, and pairwise CCA with a com-
prehensive evaluation

(iv) The experiments also show that enrichment analysis
with the hierarchical coprojection of multiple geno-
mic data analysis can identify more enriched GO
terms associated with the geoclimatic features and,
furthermore, a PPI network can be integrated in
the coprojection by HCCA to improve the confi-
dence of the enrichment analysis

The rest of the article is organized as follows: first, Section
2 describes experimental design, data preparation, the HCCA
method to combine genomic data with geoclimate data,
supervised learning for phenotype prediction, and the analy-
sis of correlation in the coprojections. In Section 3, we show
the experimental results of predicting the flowering time at
10°C using different combinations of the genomic datasets
and the geoclimate dataset. This section also includes the
enrichment analysis of the candidate genes closely associated
with several geoclimatic features identified by HCCA.
Finally, we discuss our work in Section 4.

2. Materials and Methods

Figure 1 shows an overview of our workflow. Three genomic
datasets of gene expressions, mutations, and DNA methyla-
tions are preprocessed and combined with matched acces-
sions, and the geoclimatic variables of the origin of the
accessions are collected in the geoclimate dataset shown in
Figure 1(a), based on the assumption that coprojection of
the multiple types of features will preserve true signals and
remove the noise that might exist in each individual dataset.
The joint representation obtained by the coprojection will
contain more relevant information for predicting the pheno-
type. Figure 1(b) illustrates the structure of HCCA. HCCA
applies CCA on each pair of datasets organized in a hierarchy
of the four datasets to be coprojected. At each level of the
hierarchy, the merge is decided by the analysis of condition
numbers between each pair of the datasets. After applying
the HCCA, a joint representation of the combined data is
learned as shown in Figure 1(d). Note that HCCA also allows
the option to incorporate the PPI network to impose func-
tional coherence in the projection of the genomic features
as shown in Figure 1(c). Next, the joint feature representation
is used by a supervised learning algorithm such as support
vector regression (SVR) to predict the continuous phenotype
measure in Figure 1(e). In addition, the joint feature repre-
sentation can also be used to analyze the canonical factor
loadings [9–11] to identify the correlation between features,
e.g., how well a gene correlates with a climate feature as
shown in Figure 1(f).

2.1. Data Processing. The details of the datasets and data pre-
processing used in the experiment are described below:

(i) Accessions and phenotype annotations. We down-
loaded from AraPheno [7] a dataset containing
annotations of 7,425 accessions of Arabidopsis thali-
ana, including geographical location and phenotypes
reported in 13 studies. Among the phenotypes, the
flowering time at 10°C (FT10) was reported for
1,162 accessions and at 16°C (FT16) for 1,122 acces-
sions by [5]. Since FT10 and FT16 are highly corre-
lated (Pearson correlation = 0:88), our experiments
in this study focus on the prediction and analysis of
FT10 with additional results for validation on the
FT16 phenotype shown in the Supplementary
Figure 3
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(ii) Gene expression data. RNA-seq profiling of 727
accessions grown at 22° was downloaded from [5].
The transcriptomes were obtained with Illumina
RNA sequencing, and report the RUVg normalized
read counts processed by DESeq2 package [12] for
variance stabilizing. We applied log10 transforma-
tion after adding a pseudocount of 1 to remove the
skewness of the distribution. The accession Hi-0
(7167) was removed from the analysis since it is
not included in AraPheno

(iii) Methylation data. MethylC-seq data was down-
loaded from [5], containing 927 accessions, in which
777 intersect with AraPheno. We summarize the
total number of reads at the methylated sites
reported for each of the 28,496 genes in TAIR10
annotation including within the gene loci and
also a neighborhood of 500 bps upstream and
downstream. The counts were then transformed into
z-scores across the samples to standardize the gene
variance

(iv) Mutation data. Mutation profiles were downloaded
from the 1001 Genomes Consortium [2], containing
more than 10 million biallelic SNPs of 1,135 acces-
sions obtained from whole-genome sequencing.
Since many genes are mutated in the profiles, we
counted the number of mutations per gene using

TAIR10 annotation to summarize the accumulated
mutations of each gene, which is then normalized
by z-score transformation across the samples to
standardize the gene variance

(v) Geoclimatic variables. We downloaded geoclimatic
variables of 1,131 accessions from CLIMtools [8].
CLIMtools compile 204 variables from a collection
that includes climatic, atmospheric, and soil envi-
ronmental variables from several sources. We
removed 57 variables which contain missing entries
in the accessions. Supplementary Table 1 shows the
complete list of the used variables. It is important
to note that the geoclimatic features do not
represent the grown environment of the accessions
but rather the environment of the location where
accession originates

(vi) Protein-protein interaction network. Protein-protein
interaction (PPI) network for Arabidopsis thaliana
was obtained from STRING [13] containing about
11 million known and predicted interactions for
25,490 proteins. The interactions include both direct
(physical) and indirect (functional) associations

Combining all the datasets left 501 accessions that have
genomic data and geoclimate information, as well as FT10
phenotype reported by AraPheno. In each genomic dataset,
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Figure 1: Overview of the workflow. (a) We first prepared the multiple genomic datasets and the geoclimate dataset. (b) HCCA is then
applied to combine the information for finding a joint feature representation by coprojection of the datasets in a hierarchy learned by the
analysis of the conditional numbers. (c) Optionally, the PPI network can also be integrated with HCCA to learn a more joint feature
representation with better functional coherence. (d) The coprojection of the integrated data provides the joint feature representation of the
integrated datasets. (e) The joint feature representation is then used by support vector regressor for phenotype prediction. (f) The joint
feature representation is also analyzed for the association between genomic features and the geoclimatic features.
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we kept the 5,000 genes with the highest variance before nor-
malization across the samples in the dataset. Note that each
type of the data was always collected in a single study, i.e.,
phenotypes and mutations are from 1001 Genomes Consor-
tium [2], and gene expressions and methylations are from the
study in [5]. Thus, there is no batch effect among the acces-
sions in any kind of genomic features to correct. The PPI net-
work was filtered to only include the 5,000 genes in each
dataset, giving 280,673; 210,207; and 285,747 interactions

for the gene expression dataset, the DNA methylation data-
set, and the mutation dataset, respectively.

2.2. Hierarchical Canonical Correlation Analysis of Multiple
Datasets. We propose a new method called hierarchical
canonical correlation analysis (HCCA) to learn the joint
feature representation for data integration. Figure 2 shows
the steps of running HCCA to coproject the four datasets:
gene expression dataset X2, mutation dataset X3, DNA
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Figure 2: Hierarchical canonical correlation analysis. The figure shows the steps of HCCA. (a) At the first level, condition numbers are
calculated for each pair of the four datasets. The pair (gene expression dataset X1 and geoclimate dataset X2) with the largest condition
number is selected for performing CCA to find a feature representation that maximizes their correlation. (b) At level 2, condition
numbers are calculated between DNA methylation dataset X4, mutation dataset X3, and the new dataset U1,2 combined from gene
expression dataset X1 and geoclimate dataset X2 at level 1. The pair (DNA methylation dataset X4 and dataset U1,2) with the larger
condition number is selected for coprojection into a new dataset U1,2,4 with CCA at this level. (c) At the last level, mutation data X3 and
the dataset U1,2,4 are coprojected into the final combined dataset U1,2,3,4.

4 Plant Phenomics



methylation dataset X4, and geoclimate dataset X1. HCCA
applies canonical correlation analysis (CCA) to combine
the datasets organized in a hierarchy derived from the
datasets by calculating condition numbers. In this section,
we first review CCA and explain the calculation of condi-
tion number and then introduce the HCCA algorithm.

2.2.1. Canonical Correlation Analysis. Given two datasets,
e.g., gene expression dataset X2 ∈ℝn×d2 and geoclimate
dataset X1 ∈ℝn×d1 , where n is the number of accessions
and d1 and d2 are the number of features in the two data-
sets, respectively; the goal is to find a pair of projection
vectors w1 ∈ℝd1 and w2 ∈ℝd2 such that the correlation
between the canonical variables u1 = X1w1 and u2 = X2w2
is maximized in the following optimization problem:

max
w1,w2

corr u1, u2ð Þ = uT1 u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT1 u1u

T
2 u2

p = wT
1C12w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
1C11w1w

T
2C22w2

p ,

ð1Þ

where Cij = XT
i X j. To obtain the optimal w1 and w2, it can

be shown that CCA is equivalent to a generalized eigenvalue
problem [14]. After obtaining the first pair of projection
components w1 and w2, we can continue to find a second
pair of projection components w1′ and w2′ by solving the same
optimization problem with the additional constraints that w1′
and w2′ are orthogonal to w1 and w2, respectively. And, this
process can be repeated to find a desired number of compo-
nents for coprojection of the two datasets. The number of
components to be chosen can be selected similarly as princi-
pal component analysis (PCA), in which the cumulative sum
of the eigenvalues is smaller than a percentage on the total
sum. For example, in our experiments, we set the percentage
to be 85%. To remove the singularities in Cii in the high-
dimensional data, a L2 penalty on wi can be introduced in
the form of ~Cii = Cii + αI where parameter α > 0, similar to
ridge regression [15–17] such that ~Cii becomes positive
definite.

2.2.2. Cross-Covariance Analysis with the Condition Number.
As shown in Figure 2(a), HCCA first applies CCA between
X1 and X2 to obtain a new joint representation U1,2 by
concatenating the coprojection of X1 and X2 at level 1. After
that, U1,2 and X4 are merged by a subsequent CCA to obtain
a new representation U1,2,4 at level 2 shown in Figure 2(b). At
the last level, a final CCA is performed between X3 and U1,2,4
to obtain the full joint representation U1,2,3,4 as shown in
Figure 2(c). The key component of HCCA is to determine
which pair of datasets to be coprojected with CCA at each
level. We adopt the concept of condition number for the
critical decision. Given matrix A, the condition number of A,
κðAÞ, is defined as the following:

κ Að Þ = Ak k ∗ A−1�� ��: ð2Þ

If k⋅k is L2 norm and A is positive semidefinite, κðAÞ
can be rewritten as

κ Að Þ = λmax Að Þ
λmin Að Þ , ð3Þ

where λmaxðAÞ and λminðAÞ are, respectively, the largest
and smallest eigenvalues of A. The condition number of
A measures how ill-conditioned A is. Accordingly, given
R datasets X1 ∈ℝn×d1 ,⋯, XR ∈ℝn×dR , datasets Xi and Xj

are chosen for coprojection if

arg min
i,j

κ XT
i X j

� �
, such that i, j ∈ 1,⋯, Rf g: ð4Þ

If the condition number of XT
i X j, κðXT

i X jÞ yields the
minimum among all the pairs of the datasets, the cross-
covariance matrix between Xi and Xj is the least similar
to be singular.

2.2.3. HCCA Algorithm. HCCA applies the heuristic to iden-
tify the strongest correlation among the datasets for reinforc-
ing the signals from each other dataset. The process is
repeated until all the datasets are integrated. Algorithm 1
shows the steps for the computation of HCCA on N datasets.

In the algorithm, lines 5-13 find the indices of the data-
sets Xiarg and Xjarg with the smallest condition number of
their cross-covariance for the next CCA. Line 14 calls the
CCA procedure to find the joint representation Ui,j of the
selected datasets, the datasets Xiarg and Xjarg. Lines 15-17
replace Xiarg and Xjarg by their joint representation Ui,j in
the array of the datasets. Finally, the HCCA function is called
recursively on line 18 and the program will terminate when
there is only one dataset left.

Let d be the largest feature dimension of all the datasets,
finding the indices i and j has time complexity OðN2d3Þ to

1: function HCCA(Xs= [X1,X2,...,XN])
2: if N= 1 then
3: return X1
4: end if
5: iarg=−1,jarg=−1,cmin=∞
6: for i= 1⟶N− 1 do
7: for j= i⟶N do
8: c= κ(Xs[i]TXs[j])
9: if c< cmin then
10: cmin= c,iarg= i,jarg= j
11: end if
12: end for
13: end for
14: Ui,j=CCA(Xs[iarg],Xs[jarg])
15: Xs.remove(Xs[iarg])
16: Xs.remove(Xs[jarg])
17: Xs.add(Ui,j)
18: return HCCA(Xs)
19: end function

Algorithm 1. Hierarchical canonical correlation analysis.
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find the condition number of all pairs of N datasets, and time
complexity Oðd3Þ is needed to solve the generalized eigen-
value problem by singular value decomposition (SVD) for
CCA. Therefore, given the number of datasets N ≪ d, the
HCCA algorithm has the same asymptotic time complexity
as the original CCA.

2.2.4. Incorporating Protein-Protein Interaction Network.
HCCA relies only on the correlation among the datasets to
find a joint representation. This CCA-based approach, how-
ever, does not take into account the underlying relationship
among the features (genes) in each genomic dataset, while
known relations between the genes might guide the selection
of the sets of genes that are more coherent in functions and
less likely to include correlation between noisy signals. A nat-
ural source of information of gene relationship is protein-
protein interactions in PPI networks. In our experiments,
we utilized STRING [13] PPI network. Given graph Gi of a
PPI network, its adjacency matrix Ai ∈ℝdi×di is defined on
the features of Xi, and the normalized graph Laplacian of
Ai is defined as Li = I −D−1/2

i AiD
−1/2
i , where Di is the degree

matrix of Ai. Li can be utilized as a smoothness term on wi
using the following fact:

wT
i Liwi =

1
2 〠

di

j,j′=1
Ajj′

wi,jffiffiffiffiffiffi
Djj

p −
wi,j′ffiffiffiffiffiffiffiffiffi
Dj′ j′

q
0
B@

1
CA

2

: ð5Þ

Note that wT
i Liwi enforces wi,j and wi,j′ to have a similar

value if j and j′ nodes have a strong connection in graph Gi.
The advantage of utilizing graph Laplacians of PPI networks
for network-based feature selection has been well explored
previously [18, 19]. We also propose, therefore, the use of
network-based feature smoothing on CCA using the graph
Laplacian of the PPI network as follows:

max
wi ,wj

corr ui, uj

� �

=
wT

i Cijwjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

i Cii + αiIð Þwi + αiw
T
i Liwi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

j Cjj + αjI
� �

wj + αjw
T
j Ljwj

q ,

ð6Þ

which is equivalent to the original CCA by making the
update to each Cii as ~Cii = Cii + αiðI + LiÞ.
2.2.5. Hyperparameter Tuning.Note that learning embedding
or projection of the data is unsupervised; therefore, the
hyperparameters α (when running CCA without PPI net-
work) or αis (when running CCA with PPI network) cannot
be chosen by cross-validation, different from supervised
learning or transductive learning as in [15]. Thus, in the
application of the HCCA algorithm, we propose to also esti-
mate the hyperparameters from cross-covariance analysis by
the condition number.

When HCCA runs CCA without PPI network as in equa-
tion (1) with ~Cii = Cii + αI, to make ~Cii well-conditioned, we

choose α such that ~Cii has a desirable condition number
using the technique of reconditioning [20]. Specifically, given
c as the desirable condition number of ~Cii , α can be chosen as

κ ~Cii

� �
= λmax Ciið Þ + α

λmin Ciið Þ + α
= c⟹ α = λmax Ciið Þ − cλmin Ciið Þ

c − 1 :

ð7Þ

Note that, even though c is also a parameter to be chosen,
it is more interpretable than α: As a rule of thumb, a matrix
with a condition number smaller than 10 is considered
well-conditioned [21]. Our experiments suggest that using
c = 4 yields good overall results (see that the comparison
in Supplementary Table 3 suggests c = 4 generates better
cross-variance structure for HCCA but plays little role in
PCCA and TCCA).

When HCCA runs CCA with PPI network as in equa-
tion (6), the hyperparameters are αis. Since the eigenvalues
of the normalized Laplacian matrix are between 0 and 2,
λmaxðI + LÞ ≤ 1 + 2, and λminðI + LÞ ≥ 1 + 0 by the Weyl’s
inequality (given three symmetric matrices A, B, and C
such that C = A + B, we have that λmaxðCÞ ≤ λmaxðAÞ +
λmaxðBÞ and λminðCÞ ≥ λminðAÞ + λminðBÞ, where λmax and
λmin are the largest and smallest eigenvalues of the respec-
tive matrix). Accordingly, λmaxð~CiiÞ ≤ λmaxðCiiÞ + 3α and
λminð~CiiÞ ≥ λminðCiiÞ + α. Therefore, we can obtain κð~CiiÞ
≤ c by

κ ~Cii

� �
=
λmax ~Cii

� �

λmin ~Cii

� � ≤
λmax Ciið Þ + 3α
λmin Ciið Þ + α

= c⟹ α = λmax Ciið Þ − cλmin Ciið Þ
c − 3 :

ð8Þ

2.3. Plant Phenotype Prediction. As shown in Figure 1(e),
we predict the flowering time at 10°C (FT10) using the
support vector regression (SVR) algorithm [22, 23]. Let
~X ∈ℝn×k be the final combined dataset U1,2,3,4 learned by
HCCA combining genomic datasets and geoclimate data-
set. In this regression problem, we are interested in learn-
ing a regression function over the samples in ~X to predict
the FT10 of these samples as a vector y ∈ℝn, i.e., f : ~X½i�
⟶ yi for i = 1, 2,⋯, n. SVR is a margin-insensitive
regression algorithm allowing the use of kernel functions
for nonlinear mapping. In our experiments, we used the
Gaussian kernel Kðxi, xjÞ = exp ð−σkxi − xjk2Þ:
2.4. Detecting Gene-Geoclimate Interactions by Canonical
Factor Loadings. Arabidopsis thaliana is a suitable species
for studying gene and geoclimate interactions [5, 8] because
the species self-pollinates and has not been subject to selec-
tive breeding. We use canonical factor loadings (also called
structure correlation coefficients) [9–11] to measure the
importance of each original variable for the canonical vari-
ables found by CCA. Given input variables X1 and X2, e.g.,
geoclimatic variables and gene expressions, respectively,
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and the resulting canonical variables UX1
and UX2

learned by
CCA, the canonical factor loading f ij between a ith gene
½X2�i ∈ℝn and the jth canonical variable ½UX2

�
j
∈ℝn is given

by f X2
ij = corrð½X2�i, ½UX2

�
j
Þ, where ½X2�i and ½UX2

�
j
are vec-

tors in the sample space, and therefore, f X2
ij measures the cor-

relation between the ith input variable in the original space
and the jth canonical variable. Similarly, given a geoclimatic
feature ½X1�k, with respect to the same canonical variable

½UX1
�
j
, the canonical factor loading f X1

kj = corrð½X1�k, ½UX1
�
j
Þ.

Figure 3 visualizes the canonical factor loadings of gene
expression variables and geoclimatic variables calculated with
respect to the first 2 canonical factors. Assuming a transitive
relation on correlations among random variables, f X1

kj and

f X2
ij are close in the canonical factor loading space in Figure 3,
and thus, geoclimatic variable ½X1�k and gene expression vari-
able ½X2�i should also behighly correlated. In the example, geo-
climatic feature p has a negative influence on the canonical
component 1 and, therefore, does not correlate with gene i.
In our experiments, we used the Euclidean distance between
pairs of canonical factor loadings to find the associations
between the variables.

In the case where HCCA is applied to coproject more
than two datasets, the canonical factor loadings can also be
measured at different levels of the hierarchical structure.
Figure 3(b) gives an example of when we are analyzing the
correlation between gene expression and geoclimatic vari-
ables. In the figure, we can see that the red path shows how
the information of the gene expression matrix X2 flows to
the root of the hierarchy and, in blue, the information of
geoclimatic variables flowing to the root. Therefore, the

canonical factor loading f X2
ij of X2, with respect to com-

ponent j, can be calculated as f X2
ij = corrð½X2�i, ZÞ, where

Z ∈ f½UX2
�
j
, ½UU1,2

�
j
, ½UU1,2,4

�
j
g, which are the canonical vari-

ables in the path to the root. Similarly, f X1
kj can be found as

f X1
kj = corrð½X1�k,WÞ, where W ∈ f½UX1

�
j
, ½UU1,2

�
j
, ½UU1,2,4

�
j
g.

The possible equations, at each level, are also depicted at
Figure 3(b).

2.5. Comparison with Pairwise CCA and Tensor CCA. There
also exist two other CCA-based methods for learning joint
projection of more than two datasets. One of the most com-
mon approaches is the maximization of the pairwise correla-
tion among the datasets with pairwise CCA [24]:

max
w1,⋯,wN

〠
N

i,i′=1;i>i′

wT
i Cii′wi′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
i Ciiw1w

T
i′Ci′i′wi′

q ,

subject to wT
i Ciiwi = 1, i = 1,⋯,N:

ð9Þ

More recently, [15] introduced a tensor CCA (TCCA)
formulation which maximizes the high-order correlation
among the datasets:

max
w1,⋯,wN

C12⋯N �× 1w1 �× 2w2 ⋯ �× NwN ,

subject to wT
i Ciiwi = 1, i = 1,⋯,N ,

ð10Þ

where C12⋯N is the covariance tensor. It is shown that the
problem can be solved using alternating least squares for
CANDECOMP/PARAFAC (CP) decomposition of the

fX2
i1 , f )( gene i

geoclimate feature k
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X2
i2
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Figure 3: Analysis of gene-geoclimate interactions by canonical factor loadings. (a) The plot shows the projection of the factor loadings of
genes and climate features on the first two canonical variables. In this example, gene i and geoclimatic feature k bear similar influence on
the two canonical components. (b) Geoclimatic features and gene features can be associated by correlations with canonical factor loadings
of the datasets at different levels of the hierarchy.
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tensor [15]. In spite of the success of pairwise CCA and
TCCA in combining multiple datasets in other applications,
they might not be particularly suitable for integrating high-
dimensional genomic datasets. First, enforcing all the data-
sets to correlate simultaneously can be too restrictive if one
or a subset of the datasets has a relatively low correlation with
the other datasets. Second, there might be a group structure
among the datasets, i.e., datasets inside the same group corre-
late very well while datasets in different groups correlate less.
HCCA is specifically designed to introduce a hierarchy
among the dataset to capture the structure and minimize
information loss by coprojecting similar datasets first. In
our experiments, we will demonstrate that HCCA outper-
forms pairwise CCA and TCCA by learning a more informa-
tive coprojection of gene expressions, DNA methylations,
and mutations for FT10 phenotype prediction.

3. Results

In this section, we describe the experiments and the results of
phenotype prediction and the correlation analysis among
genomic and geoclimatic variables.

3.1. Prediction of Flowering Time. In this experiment, we
compare HCCA with several other baseline methods to pre-
dict the flowering time at 10°C (FT10) phenotype collected
from AraPheno. We first show the importance of including
geoclimatic features from the accessions’ origin location
using CCA, and then, we present the improved prediction
results using HCCA to integrate multiple datasets.

3.1.1. Baselines. HCCA was compared with the following
baselines in the task of predicting FT10 phenotype:

(i) Similarity network fusion (SNF) [25] combines mul-
tiple genomic data by building a similarity network
for each of the data types and then integrating these
networks using network fusion. Afterward, graph
embedding by SVD is applied to the fused network
to obtain the top r first components for feature
embedding

(ii) Pairwise CCA (PCCA), described in Section 2.5,
maximizes the pairwise correlation across all the
datasets simultaneously

(iii) Tensor CCA (TCCA), described in Section 2.5, max-
imizes high-order tensor correlation across all the
datasets

(iv) Stacked datasets (Stacked). We also considered a
naive approach that stacks all the datasets together
in a single matrix. Specifically, the 4 datasets X1
∈ℝn×d1 ,⋯, X4 ∈ℝn×d4 are stacked to be a U1,2,3,4
∈ℝn×ðd1+d2+d3+d4Þ.

For HCCA, PCCA, and TCCA, automatic tuning of
parameters was performed using the mechanism described
in Section 2.2.5. To run SNF, we performed a grid search
on its parameters K = ½10, 20, 30�, α = ½0:3, 0:4,⋯, 0:9�, and
T = ½10, 20� and the number of components in the embed-

ding r = ½10, 20,⋯, 100� and report the best result obtained
in the grid search.

3.1.2. Evaluation. After obtaining the joint representation of
all the datasets, the data was randomly partitioned into a
training set and a test set. Each training set was used to train
an SVR model using MATLAB function fitrsvm with Gauss-
ian kernel. 10-fold cross-validation was performed on the
training set for the selection of SVR parameters. After train-
ing the regression model with the training set, the test set was
used to generate the coefficient of determination R2, which
measures the goodness-of-fit of a regression model by the
proportion of variance in the target variable y that can be
explained by the model variables. R2 is defined by the follow-
ing expression:

R2 = 1 − ∑n
i=1 yi − y∧ið Þ2

∑n
i=1 yi − y∧ð Þ2 , ð11Þ

where yis are the ground-truth values, y∧i are the predicted
values, and �y is the mean of yis on the training set. We repeat
the experiments 200 times and report the mean and standard
deviation of R2.

3.1.3. Incorporation of Geoclimatic Data Improves Phenotype
Prediction. We first analyzed the effect of combining geocli-
matic variables of the accession locations with each type of
genomic data to predict FT10 values. The assumption is that
the FT10 phenotype is not only defined by the genomic
features but also highly related to the environment of the
original location which shaped the genetic makeup of the
accession by evolution.

Figure 4(a) shows the results by training with each indi-
vidual dataset. Interestingly, training with the geoclimate
dataset obtains the best mean R2 value 0.557, followed by
the mutation dataset with a mean of 0.533. The result sug-
gests that the flowering time is more predictable by the geno-
types which are shared by the environment at the location of
accession origin. Without a surprise, the gene expression
dataset provides the least information for FT10 prediction
with a mean R2 of 0.412 since both the gene expressions are
collected from the samples grown in a different controlled
environment from the samples used for FT10 phenotyping.
Note that training using DNA methylation dataset results
in a higher mean R2 value of 0.486 because DNAmethylation
is probably less affected by the different growth environment
than gene expressions [5].

Figure 4(b) shows the results of combining each individ-
ual genomic dataset with the geoclimate dataset. Combining
mutation profiles with geoclimatic variables by CCA resulted
in a mean R2 value of 0.596, against 0.533 of using mutation
profiles alone, and similar improvements are also observed in
the combination with gene expressions and DNA methyla-
tions. CCA performs better than SNF and simple stacking
of the datasets in every case. Clearly, stacking the datasets
together does not capture the relationship among the data-
sets for improving the prediction. We also tested stacking
the projected datasets with PCA. The results are worse (not
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shown). SNF seems to obtain better results in combining the
genomic datasets such as mutation profile combined with
gene expression data rather than the geoclimate dataset.
The detailed results are shown in Supplementary Figure 1.

3.1.4. Integrating All Genomic Datasets and Geoclimate
Dataset Provides the Best Prediction.We next show howmul-
tiple genomic datasets can be further integrated together with
the geoclimate dataset to improve the prediction of FT10. To
understand the role of the condition numbers used by HCCA
to build the hierarchical organization of the datasets, we first
analyzed how the relation between the prediction accuracy
and the condition number κðXi

T XjÞ between each pair of
the datasets Xi and Xj in Figure 5(a). The points in the figure
represent all the pairs of the four datasets to be combined in
the first level, and the dashed line is a linear fitting to the
points. The negative trend (correlation −0.6934) is clear
between the log of κ and the R2. HCCA selects the mutation
dataset and the geoclimate dataset (shown in red) to be
coprojected at level 1, which achieves the second best R2, only
slightly after the best option (combining the gene expression
dataset and the geoclimate dataset). The plot clearly suggests
that the analysis of condition number is a useful strategy.
Figure 5(b) compares different hierarchies to organize the
datasets in HCCA. First, it appears that the prediction perfor-
mance is sensitive to the order how the datasets are selected
for coprojection at different levels since the mean R2 obtained
is significantly different (ANOVA p value = 0). Second,
marked in red, HCCA selects the fourth best order of com-
bining the datasets while the two best options start with the
selection of gene expressions and geoclimatic variables, both

of which also generates a κ value very similar to the one
selected by HCCA (mutation profile and geoclimatic vari-
ables) as shown in Figure 5(a), and the third best option also
starts with the selection of mutation profile and geoclimatic
variables.

Figure 6 shows the results when multiple genomic data-
sets are integrated with HCCA and the baseline methods.
In the plots, the results are shown for one to four datasets
used for prediction from left to right. Overall, we observe
the same pattern in all the compared methods that the more
datasets integrated, the better the prediction is. HCCA,
applied to integrate three datasets and four datasets, exhibits
a better R2 value than the baseline methods, suggesting that
the hierarchical integration of the datasets collaborates to
extract more relevant signals than simultaneous integration
of the datasets together in one step. It is interesting that the
most restrictive project method, tensor CCA (TCCA), does
not perform well as the other methods. We believe that
TCCA fails to discover optimal correlation among the data-
sets since higher-order Pearson’s correlation is not well-
defined when inconsistent correlations exist among different
subsets of the random variables. Stacking the datasets also
does not perform very well even if the results are consistently
improved as more datasets are considered. Finally, SNF per-
formed relatively well but adding more datasets does not
seem to play a large impact on the results.

Figure 7 shows a visual comparison of how well the pre-
dictions fit the ground-truth values. In the two cases, we can
notice that SVR trained with gene expression only fails to
predict the FT10 values in the 15% confidence range with
an MSE of 180.84 while SVR trained on all the datasets inte-
grated with HCCA predicts FT values well within the

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
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Gene expression
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Figure 4: Improved FT10 phenotype prediction by the integration of geoclimate data. (a) Phenotype prediction accurate by learning with
each individual genomic dataset or geoclimate dataset. (b) Phenotype prediction accurate by integrating one type of genomic data with
geoclimate data.
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confidence range with an MSE of 107.37. Table 1 also shows
the proportion of the predictions that fall within 5%, 10%,
and 15% confidence range, for each individual dataset, and
the integrated four datasets by HCCA, PCCA, and TCCA.
The results further confirm that integrating multiple data-
sets with HCCA significantly improves the predictions of
FT10 values.

In Supplementary Figure 3, we also show prediction
results of the FT16 values using the same experimental
setting. Very similar results are observed in all the
experiments with no surprise since the FT16 phenotypes are
highly correlated with the FT10 phenotypes.

3.2. Detecting Gene-Geoclimate Associations. In this experi-
ment, we evaluate how well HCCA can identify genes corre-
lated with geoclimatic variables of interest. We also show that

by incorporating the PPI network, we can further improve
the relevance of the identified genes by leveraging the infor-
mation of the interactions between their protein products.
To measure the relevance of the associated genes, we
performed gene enrichment with clusterProfiler [26], with a
p value cutoff of 0.05 after Bonferroni correction. Two types
of enrichment terms were considered: Biological Processes
Gene Ontology (GO) terms [27, 28] and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway terms [29].

3.2.1. Hierarchical Enrichment Analysis Detects More
Relevant Gene-Geoclimate Associations. To detect gene
expressions correlating with geoclimatic variables of interest,
we fixed the first level of the hierarchical structure as copro-
jecting gene expressions and geoclimatic features such that
their associations can be evaluated at every level in the
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log10 𝜅(Xi Xj)T

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61
R

2

Level 1 CCA
(Exp,GeoCl)

(Mut,GeoCl)

(Met,GeoCl)
(Exp,Mut)

(Exp,Met)

(Mut,Met)

0.58 0.6 0.62 0.64 0.66
R2

((Exp,GeoCl),(Mut,Met))
(((Exp,GeoCl),Mut),Met)
(((Exp,GeoCl),Met),Mut)
((Mut,GeoCl),(Exp,Met))
(((Mut,GeoCl),Exp),Met)
(((Mut,GeoCl),Met),Exp)
((Met,GeoCl),(Exp,Mut))
(((Met,GeoCl),Exp),Mut)
(((Met,GeoCl),Mut),Exp)
(((Exp,Mut),GeoCl),Met)
(((Exp,Mut),Met),GeoCl)
(((Exp,Met),GeoCl),Mut)
(((Exp,Met),Mut),GeoCl)
(((Mut,Met),GeoCl),Exp)
(((Mut,Met),Exp),GeoCl)

(a) (b)

Figure 5: Learning hierarchical organization of the datasets by HCCA. (a) The R2 values of FT10 prediction by combinations of each pair of
datasets are plotted against the condition number of the cross-covariance matrix of the two datasets. The x-axis shows the log of the condition
number κðXi

TXjÞ of a pair of datasets (Xi, Xj), and the y-axis is the R2 of the prediction obtained by SVR. (b) Comparison of the different
hierarchical organizations of the datasets used for integration by CCA. The red combination is selected by the analysis of condition
numbers in HCCA.
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Figure 6: Improvement by integration of all the datasets. The figure shows the mean and variance of R2 reported for each combination of the
datasets and data integration methods. The results of using the individual dataset are shown for comparison in the blue bar plots on the left.
The x-axis shows the datasets used to generate the results in the bar plot, and the y-axis the mean and variance of R2 values obtained by SVR.
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hierarchy. Based on the condition numbers, DNA methyla-
tion is chosen to be merged at level 2 and then mutation pro-
files at level 3. After the coprojections, we calculated the
canonical factor loadings for the geoclimatic features and
gene expressions to project them together for analysis of
correlation based on their proximity.

The first analysis by only projecting the geoclimatic
features to the first two canonical components is shown
in Figure 8(a). Consistently, similar geoclimatic features
are projected closely. For example, “Ultra Violet (UV)
Index in Summer”, “UV Index in Spring”, and “Net Radi-
ation in Summer” appear very close in the projection.
Similarly, the abiotic stress features “Ozone (O3) level in
Spring” and “Carbon Monoxide (CO) level in Spring” also
appear close and together with the “BIO8” from the WC2
(WorldClim v2) and CHELSA (Climatologies at High
Resolution for the Earths Land Surface Areas). Figure 8(b)
shows two geoclimatic features of interest, “Net Radiation
in Summer” and “Precipitation in the Driest Month”,
projected together with all the genes based on the canonical
factor loadings. The 100 genes closest to the “Net Radiation
in Summer” are marked red, and the 100 genes closest to

“Precipitation in the Driest Month” are marked yellow.
These two sets of 100 genes are considered to correlate with
the two geoclimatic features in the first 2 factors and further
analyzed by clusterProfiler enrichment.

Figure 8(c) at the top shows results of enrichment
analysis for the 100 genes closest to “Precipitation in the
Driest Month”. The tables show the terms enriched at
each level. There are several interesting observations in
the enrichment analysis. First, it is evident that CCA is
able to enrich more function terms than the baseline
which calculates the correlation in the original space
without coprojection. For example, it is known that the
environment precipitation has an effect on the flower
development and reproduction [30]. The enriched term
“Circadian rhythm” is known to be related to the flowering
and is also affected by environmental changes [31], and the
enriched terms “Carpel development”, “Ovary develop-
ment”, and “Gynoecium development” involve structures
that are better developed in the absence of drought [32].
Moreover, some of these terms are only enriched when
all the levels of HCCA coprojections are utilized in the
analysis.
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Figure 7: Visualizing predictions in comparison to the range of true values. The plots show how well the predicted values fit the ground-truth
values in two cases: (a) using only gene expression data and (b) using all the four datasets by HCCA. In the plots, the x-axis represents the
samples sorted by the true FT10 values, and y-axis the FT10 values. The ground-truth values are shown as the solid line, dashed lines
represent a margin of 15%, and the dots represent the prediction of each sample. At the top, we also show the mean squared error (MSE)
of the predictions.

Table 1: The proportion of predicted cases inside the confidence region.

Mutation Expression Methylation Climate HCCA PCCA TCCA

5% 0.3154 0.2575 0.2774 0.2834 0.3673 0.2994 0.2794

10% 0.5569 0.5010 0.5170 0.5689 0.6208 0.5948 0.5449

15% 0.7246 0.6866 0.7226 0.7365 0.7984 0.7924 0.7345
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Figure 8(c) at the bottom shows a similar analysis of “Net
Radiation in Summer”. Several terms related to defense
response are enriched such as “Response to wounding” and
“Response to insect”. It is known that the elevated growth
temperature is associated with plant defense responses,
which makes the plant more susceptible to pathogens
[33, 34]. In addition, the temperature is one of the main envi-
ronmental factors that affect plant metabolism [35], which
explains the terms related to the metabolism process. Finally,
the roles of jasmonic acid in temperature stress have been

investigated in [36]. HCCA missed the alkaloid term associ-
ated with “Net Radiation” which is identified by the baseline
method to be associated with this climate feature [37]. Note
that this enrichment of alkaloid term only involves 2 genes,
AT2G29370 and AT1G31690, with a weak association.
Network-based HCCA does capture AT1G31690 and reports
a p value of 0.08 for the enrichment which is only slightly off
the 0.05 cutoff.

It is important to note that in the enrichment analysis of
both of the geoclimatic features, the number of the enriched
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Figure 8: Enrichment analysis of the genes correlated with geoclimatic features. (a) Projection of all the geoclimatic features into the first two
canonical factors. A subset of the dots represents labels as examples. (b) Projection of the 5,000 genes in the transcriptome data together with
two geoclimatic features: “Net Radiation in Summer” and “Precipitation in the Driest Month”, marked by the arrows. The 100 genes closest to
the two geoclimatic features are shown in red and yellow, respectively. (c) The improved enrichment analysis of the 100 closest genes as more
levels of HCCA is considered. The baseline results are obtained by directly calculating the correlation between gene expressions and the two
geoclimatic features without any projection or coprojection.
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terms and the relevant genes in these enriched terms tend to
increase, which significantly improves the accuracy and the
confidence of the enrichment analysis. Figure 9(a) shows
the number of enriched terms across all the geoclimatic fea-
tures, and we can see again that combining more datasets sig-
nificantly increased the number of terms identified. The
results strongly suggest that by incorporating other types of
genomic data in the coprojection with gene expressions and
geoclimatic features, more useful functional information is
introduced into the coprojections. The results confirm the
value of integrating multiple datasets for gene-geoclimate
association analysis. Additionally, Figure 9(b) shows the
same analysis with the DNA methylation profiles. We also
observe that the incorporation of multiple genomic datasets
in coprojection increases the number of the enriched func-
tional terms while the difference is less obvious.

3.2.2. Incorporating PPI Network Improves Confidence of
Enrichment Analysis. We next include the PPI network as a
smoothness term in the CCA framework as shown in equa-
tion (6) to find a feature representation that considers the
interaction between the proteins as well as the correlations
between the pairs of the datasets. We still performed HCCA
by merging gene expressions and geoclimatic features at the
first level and used the condition number to select the data-
sets at levels 2 and 3 in the hierarchical structure. The
selection of parameter α follows equation (8).

Figure 9 shows the improvement achieved when utilizing
the PPI network in the analysis. The two green curves in
Figures 9(a) and 9(b) show that using all the genomic data

together with the PPI network significantly increases the
number of enriched terms in correlating gene expressions
or DNA methylations with the geoclimatic features, respec-
tively. More specifically with gene expressions, the analysis
using the PPI network enriched in average 26.2 terms for
each geoclimatic feature, against 13.2 terms for running
HCCA without the PPI network and 2.9 terms by correlation
in the original space.

Figure 9(a) also shows the improvement in the enrich-
ment analysis of two geoclimatic features: “Frost day fre-
quency in Spring” (marked by squares) and “Net Radiation
in Summer” (marked by stars) with or without using the
PPI network. In the association analysis of “Frost day fre-
quency in Spring”, the number of enriched terms is increased
from 30 to 56; and in the analysis of “Net Radiation in
Summer”, the number is increased from 8 to 63. The specific
terms, as well as the list of genes and statistical confidence
levels, can be found in the Supplementary Table 2. In
the analysis with the PPI network, the 26 new terms
associated with “Frost day frequency in Spring” include
“Photosynthesis” as an adaptation to cold stress [38] and
“Trichoblast maturation”, which happens in low phosphate
condition [39] in need for cold tolerance [40]. Terms
related to response to starvation and homeostasis linked to
cold response [41, 42] were identified with or without the
PPI network. Moreover, more genes are associated to the
enriched terms with higher confidence. For example,
“Cellular response to starvation” was enriched by 10% of
the genes without the PPI network compared with 17%
with the PPI network. In the analysis of “Net Radiation in
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Figure 9: Comparison of the number of enriched terms. The plots show the number of enriched GO and KEGG terms as more datasets and
PPI are introduced in the analysis of genes associated with geoclimatic features using (a) gene expressions and (b) DNA methylations. Each
curve was sorted by the number of enriched terms. The blue curve shows the baseline which applies correlation between genes and the
geoclimatic features in the original sample space. In the plots in (a), three interesting geoclimatic features are labeled in each curve in
different shapes for comparison.
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Summer” with the PPI network, compared with the results
in Figure 8(c), 55 new enriched terms were identified,
including other defense response terms as “Regulation of
immune response” and “Defense response to fungus” and
other terms linked to temperature stress, as “Salicylic acid
mediated signaling pathway” [36].

Overall, the incorporation of the PPI network to guide
the coprojections identifies a better set of genes associated
with the geoclimatic features of interest, which lead to the
identifications of more relevant GO and KEGG terms with
higher confidence in the enriched analysis.

4. Discussion

In this work, we studied the role of geoclimatic variables in
phenotype prediction, in particular the flowering time of
Arabidopsis thaliana and the interactions between geocli-
matic variables and genomic features. To facilitate the study,
we proposed HCCA, a hierarchical approach for data inte-
gration with canonical correlation analysis. We also adopted
several advanced computation techniques including the con-
dition number to measure cross-dataset correlation, graph
Laplacian to incorporate network information in coprojec-
tion, and hierarchical analysis of canonical factor loadings
to detect gene-geoclimate interactions. One advantage of
the proposed HCCA framework is the simplicity of model
selection where only hyperparameter c, the cutoff condition
number, is a generic measure in matrix theory. As we show
in Supplementary Table 3, we observe consistent results for
c < 10 in all the CCA-based methods. It is very likely that
HCCA is a robust method to generalize to new test data
and applications to other dataset integration problems.

It is important to note that our study is different
from those on general genotype×environment interactions
ðG × EÞ where the environment refers to the growth and
development environment of the plant [43]. Thus, our study
does not explain or predict the fitness and the adaptation of a
genotype in some particular environment. Nevertheless, this
study tests the hypothesis that geoclimate features contain
useful information for building data-drive predictive models
of phenotypes. In this supervised learning setting, the pheno-
types of a large number of training genotypes are known; the
task is to predict the phenotype of a test genotype. While this
setting is not easily applicable in most empirical breeding
problems, it provides insights into the impact of geoclimate
features from the plant origin on the plant genetic and epige-
netic makeups, gene expressions, and their phenotypes, and
this association can improve phenotype prediction.

It is a limitation of the current study that the geoclimatic
variables do not constitute the growth environment of the
individuals, and thus, we cannot affirmatively conclude that
the same observation would apply to the environmental
information from the grown location. It is likely that origin
geoclimate information and growth environment provide
complementary information for gene-environment associa-
tion analysis. One possible future work is to use the pheno-
types measured under different environment conditions
such as those from the 13 studies in AraPheno as feature-
s/outputs to predict each other. Unfortunately, there is no

existing well-organized large-scale environment data avail-
able, even for Arabidopsis thaliana populations, to enable a
comprehensive analysis. Nevertheless, HCCA and the other
techniques used in this study are all applicable to the analysis,
if the data become available in the future.

Another possible limitation is that the gene expression
profiles and the methylation profiles in the study were col-
lected at a temperature of 22°C while the target flower time
was measured at a temperature of 10°C. Ideally, we would like
to have the molecular profiles measured together with the
phenotypes at the same temperature. Our results suggest that
the transcriptome and methylome collected at 22°C are still
very predictive of the FT10. We postulate that the tran-
scriptome collected at 22°C captures the general structure
of the underlying biological system and the coordinations
among the gene expressions, which is helpful information
for predicting other phenotypes including the flower time
at different temperatures by supervised learning.

Finally, other than support vector regression, we also
tested two more supervised learning methods including deep
neural networks and linear regression. We noticed these
other methods generated similar or worse prediction results,
some of which are shown in Supplementary Figure 2. It
should also be possible to integrate other variations of
CCA as a building block in our hierarchical approach,
such as a structured sparse canonical correlation analysis
[44], which incorporates structural information between
variables. It is also possible to consider the population
structure among the individuals to guide CCA. Typically,
the pedigree information of the accessions are better
organized as a hierarchical family tree and the tree can be
used to derive subgroup for pattern discovery. Since the
hierarchical tree built either from pedigree information or
genetic information is highly inferable with the mutation
data in this study, more detailed analysis of their relation
is necessary to motive the integration of a population
structure, and in addition, ideally, a different computational
technique is needed for incorporating the tree structures
such as tree-guided group Lasso [45]. Therefore, it is
possible to further optimize these methods but we choose to
focus on the data integration aspect in this study and would
like to leave the tuning of regressors and other structural
regularization models for future work.

Data Availability

All the source code and data are available at https://github
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Supplementary Figure 1: integration of pairs of genomic
datasets for FT10 prediction—comparison of FT10 predic-
tion by CCA, SNF, and stacking datasets to integrate each
pair of the genomic datasets. Supplementary Figure 2: com-
parison of regression algorithms for FT10 prediction—linear
regression, neural network, and support vector regression
(SVR) were compared on predicting FT10 values with the
projection learned with HCCA integrating a genomic dataset
and the geoclimate dataset: (a) gene expression+geoclimate,
(b) mutation+geoclimate, and (c) methylation+geoclimate.
Supplementary Figure 3: FT16 phenotype prediction
results—comparison of the R2 values for FT16 phenotype
prediction with SVR on (a) each individual dataset; (b) inte-
gration of a genomic dataset and the geoclimate dataset; (c)
all the datasets combined by HCCA, TCCA, PCCA, SNF,
and stacking datasets. Supplementary Table 1: geoclimate
variables—list of geoclimate variables. Supplementary Table 2:
gene enrichment analysis by canonical factor loadings—list
of GO terms and KEGG pathways enriched by the genes
selected by canonical factor loadings for the geoclimate vari-
ables Frost day frequency (Spring) and Net Radiation (Sum-
mer). Supplementary Table 3: parameter comparison—FT10
phenotype prediction by HCCA, PCCA, and TCCA when
different condition numbers are used for the cross-
covariance calculation. (Supplementary Materials)

References

[1] M. W. Horton, A. M. Hancock, Y. S. Huang et al., “Genome-
wide patterns of genetic variation in worldwide Arabidopsis
thaliana accessions from the RegMap panel,” Nature Genetics,
vol. 44, no. 2, pp. 212–216, 2012.

[2] C. Alonso-Blanco, J. Andrade, C. Becker et al., “1,135 genomes
reveal the global pattern of polymorphism in Arabidopsis
thaliana,” Cell, vol. 166, no. 2, pp. 481–491, 2016.

[3] R. J. Schmitz, M. D. Schultz, M. A. Urich et al., “Patterns of
population epigenomic diversity,” Nature, vol. 495, no. 7440,
pp. 193–198, 2013.

[4] M. J. Dubin, P. Zhang, D. Meng et al., “DNA methylation in
Arabidopsis has a genetic basis and shows evidence of local
adaptation,” eLife, vol. 4, article e05255, 2015.

[5] T. Kawakatsu, S. S. C. Huang, F. Jupe et al., “Epigenomic diver-
sity in a global collection of Arabidopsis thaliana accessions,”
Cell, vol. 166, no. 2, pp. 492–505, 2016.

[6] L. Cooper, A. Meier, M. A. Laporte et al., “The Planteome
database: an integrated resource for reference ontologies, plant
genomics and phenomics,” Nucleic Acids Research, vol. 46,
no. D1, pp. D1168–D1180, 2018.

[7] Ü. Seren, D. Grimm, J. Fitz et al., “AraPheno: a public database
for Arabidopsis thaliana phenotypes,” Nucleic Acids Research,
vol. 45, no. D1, pp. D1054–D1059, 2017.

[8] Á. Ferrero-Serrano and S. M. Assmann, “Phenotypic and
genome-wide association with the local environment of Arabi-
dopsis,” Nature Ecology & Evolution, vol. 3, no. 2, pp. 274–285,
2019.

[9] T. Sliusarenko and B. K. Ersbøll, “Canonical correlation
analysis of course and teacher evaluations,” in Proceedings
of the 2nd International Conference on Computer Supported
Education - Volume 1: CSEDU, pp. 451–454, Valencia, Spain,
2010.

[10] C. J. Ter Braak, “Interpreting canonical correlation analysis
through biplots of structure correlations and weights,” Psycho-
metrika, vol. 55, no. 3, pp. 519–531, 1990.

[11] H. E. Chacko, “International technology transfer for improved
production functions,” Engineering Costs and Production
Economics, vol. 10, no. 1, pp. 245–252, 1986.

[12] M. I. Love, W. Huber, and S. Anders, “Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2,”
Genome Biology, vol. 15, no. 12, article 550, 2014.

[13] D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10:
protein–protein interaction networks, integrated over the tree
of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–
D452, 2014.

[14] F. R. Bach and M. I. Jordan, “Kernel independent component
analysis,” Journal of Machine Learning Research, vol. 3,
pp. 1–48, 2002.

[15] Y. Luo, D. Tao, K. Ramamohanarao, C. Xu, and Y. Wen, “Ten-
sor canonical correlation analysis for multi-view dimension
reduction,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 11, pp. 3111–3124, 2015.

[16] J. Chen, G. Wang, Y. Shen, and G. B. Giannakis, “Canonical
correlation analysis of datasets with a common source graph,”
IEEE Transactions on Signal Processing, vol. 66, no. 16,
pp. 4398–4408, 2018.

[17] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: an overview with application to learning
methods,” Neural Computation, vol. 16, no. 12, pp. 2639–
2664, 2004.

[18] R. Petegrosso, S. Park, T. H. Hwang, and R. Kuang, “Transfer
learning across ontologies for phenome–genome association
prediction,” Bioinformatics, vol. 33, no. 4, pp. 529–536, 2016.

[19] Z. Tian, T. Hwang, and R. Kuang, “A hypergraph-based learn-
ing algorithm for classifying gene expression and arrayCGH
data with prior knowledge,” Bioinformatics, vol. 25, no. 21,
pp. 2831–2838, 2009.

[20] J. M. Tabeart, S. L. Dance, A. S. Lawless, N. K. Nichols, and
J. A. Waller, “Improving the condition number of estimated
covariance matrices,” https://arxiv.org/abs/1810.10984, 2018.

[21] C. F. Dormann, J. Elith, S. Bacher et al., “Collinearity: a review
of methods to deal with it and a simulation study evaluating
their performance,” Ecography, vol. 36, no. 1, pp. 27–46,
2013.

[22] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and
V. Vapnik, “Support vector regression machines,” in Advances
in neural information processing systems, pp. 155–161, MIT
Press, 1997.

[23] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–
222, 2004.

15Plant Phenomics

http://downloads.spj.sciencemag.org/plantphenomics/2020/1969142.f1.zip
https://arxiv.org/abs/1810.10984


[24] J. D. Carroll, “Generalization of canonical correlation analysis
to three or more sets of variables,” in Proceedings of the 76th
annual convention of the American Psychological Association,
vol. 3, pp. 227-228, Washington, DC, USA, 1968.

[25] B. Wang, A. M. Mezlini, F. Demir et al., “Similarity network
fusion for aggregating data types on a genomic scale,” Nature
Methods, vol. 11, no. 3, pp. 333–337, 2014.

[26] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “clusterProfiler: an
R package for comparing biological themes among gene clus-
ters,” Omics: A Journal of Integrative Biology, vol. 16, no. 5,
pp. 284–287, 2012.

[27] M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool
for the unification of biology,” Nature Genetics, vol. 25, no. 1,
pp. 25–29, 2000.

[28] The Gene Ontology Consortium, “The gene ontology resource:
20 years and still GOing strong,” Nucleic Acids Research,
vol. 47, no. D1, pp. D330–D338, 2018.

[29] M. Kanehisa and S. Goto, “KEGG: Kyoto encyclopedia of
genes and genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27–30, 2000.

[30] L. M. Moore andW. K. Lauenroth, “Differential effects of tem-
perature and precipitation on early‐ vs. late‐flowering species,”
Ecosphere, vol. 8, no. 5, article e01819, 2017.

[31] K. Greenham, P. Lou, J. R. Puzey et al., “Geographic variation
of plant circadian clock function in natural and agricultural
settings,” Journal of Biological Rhythms, vol. 32, no. 1,
pp. 26–34, 2017.

[32] Z. Su, X. Ma, H. Guo et al., “Flower development under
drought stress: morphological and transcriptomic analyses
reveal acute responses and long-term acclimation in arabidop-
sis,” The Plant Cell, vol. 25, no. 10, pp. 3785–3807, 2013.

[33] M. A. Jamieson, A. M. Trowbridge, K. F. Raffa, and R. L.
Lindroth, “Consequences of climate warming and altered
precipitation patterns for plant-insect and multitrophic
interactions,” Plant Physiology, vol. 160, no. 4, pp. 1719–
1727, 2012.

[34] M. S. Haider, C. Zhang, M. M. Kurjogi et al., “Insights into
grapevine defense response against drought as revealed by bio-
chemical, physiological and RNA-Seq analysis,” Scientific
reports, vol. 7, no. 1, article 13134, 2017.

[35] C. C. Nievola, C. P. Carvalho, V. Carvalho, and E. Rodrigues,
“Rapid responses of plants to temperature changes,” Tempera-
ture, vol. 4, no. 4, pp. 371–405, 2017.

[36] Y. Wang, Z. Bao, Y. Zhu, and J. Hua, “Analysis of temperature
modulation of plant defense against biotrophic microbes,”
Molecular Plant-Microbe Interactions, vol. 22, no. 5, pp. 498–
506, 2009.

[37] L. Yang, K.-S.Wen, X. Ruan, Y.-X. Zhao, F. Wei, and Q.Wang,
“Response of plant secondary metabolites to environmental
factors,” Molecules, vol. 23, no. 4, p. 762, 2018.

[38] X. Zhou, S. Chen, H. Wu, and H. Xu, “Effects of cold stress on
the photosynthesis and antioxidant system of Rhododendron
chrysanthum Pall.,” article 2017030131, 2017.

[39] G. Janes, D. von Wangenheim, S. Cowling et al., “Cellular pat-
terning of Arabidopsis roots under low phosphate conditions,”
Frontiers in Plant Science, vol. 9, p. 735, 2018.

[40] V. Hurry, A. Strand, R. Furbank, and M. Stitt, “The role of
inorganic phosphate in the development of freezing tolerance
and the acclimatization of photosynthesis to low temperature
is revealed by the pho mutants of Arabidopsis thaliana,” The
Plant Journal, vol. 24, no. 3, pp. 383–396, 2000.

[41] D. Baek, H. J. Chun, D.-J. Yun, and M. C. Kim, “Cross-talk
between phosphate starvation and other environmental stress
signaling pathways in plants,” Molecules and Cells, vol. 40,
pp. 697–705, 2017.

[42] J. Hua, P. Grisafi, S.-H. Cheng, and G. R. Fink, “Plant growth
homeostasis is controlled by the Arabidopsis BON1 and
BAP1 genes,” Genes & Development, vol. 15, pp. 2263–2272,
2001.

[43] M. El-Soda, M. Malosetti, B. J. Zwaan, M. Koornneef, and
M. G. Aarts, “Genotype × environment interaction QTL
mapping in plants: lessons from Arabidopsis,” Trends in Plant
Science, vol. 19, no. 6, pp. 390–398, 2014.

[44] X. Chen, L. Han, and J. Carbonell, “Structured sparse canoni-
cal correlation analysis,” in Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics,
vol. 22, pp. 199–207, La Palma, Canary Islands, Spain, 2012.

[45] H. Zhang, D. Roe, and R. Kuang, “Detecting population-
differentiation copy number variants in human population
tree by sparse group selection,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 16, no. 2,
pp. 538–549, 2017.

16 Plant Phenomics


	Hierarchical Canonical Correlation Analysis Reveals Phenotype, Genotype, and Geoclimate Associations in Plants
	1. Introduction
	2. Materials and Methods
	2.1. Data Processing
	2.2. Hierarchical Canonical Correlation Analysis of Multiple Datasets
	2.2.1. Canonical Correlation Analysis
	2.2.2. Cross-Covariance Analysis with the Condition Number
	2.2.3. HCCA Algorithm
	2.2.4. Incorporating Protein-Protein Interaction Network
	2.2.5. Hyperparameter Tuning

	2.3. Plant Phenotype Prediction
	2.4. Detecting Gene-Geoclimate Interactions by Canonical Factor Loadings
	2.5. Comparison with Pairwise CCA and Tensor CCA

	3. Results
	3.1. Prediction of Flowering Time
	3.1.1. Baselines
	3.1.2. Evaluation
	3.1.3. Incorporation of Geoclimatic Data Improves Phenotype Prediction
	3.1.4. Integrating All Genomic Datasets and Geoclimate Dataset Provides the Best Prediction

	3.2. Detecting Gene-Geoclimate Associations
	3.2.1. Hierarchical Enrichment Analysis Detects More Relevant Gene-Geoclimate Associations
	3.2.2. Incorporating PPI Network Improves Confidence of Enrichment Analysis


	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

